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Abstract

Achieving bound consistency for the No-Overlap
constraint is known to be NP-complete. There-
fore, several polynomial-time tightening tech-
niques, such as edge finding, not-first-not-last rea-
soning, and energetic reasoning, have been intro-
duced for this constraint. In this work, we de-
rive the first bound-consistent algorithm for the No-
Overlap constraint. By building on the No-Overlap
MDD defined by Ciré and van Hoeve, we extract
bounds of the time window of the jobs, allowing
us to tighten start and end times in time polyno-
mial in the number of nodes of the MDD. Sim-
ilarly, to bound the size and time-complexity, we
limit the width of the MDD to a threshold, cre-
ating a relaxed MDD that can also be used to re-
lax the bound-consistent filtering. Through exper-
iments on a sequencing problem with time win-
dows and a just-in-time objective (1 | r;,d;,d; |
>>E; + > T;), we observe that the proposed fil-
tering, even with a threshold on the width, achieves
a stronger reduction in the number of nodes vis-
ited in the search tree compared to the previously
proposed precedence-detection algorithm of Ciré
and van Hoeve. The new filtering also appears to
be complementary to classical propagation meth-
ods for the No-Overlap constraint, allowing a sub-
stantial reduction in both the number of nodes and
the solving time on several instances.

1 Introduction

Let J = {1,...,n}, a set of n jobs. Each job i € J has a
release date r; (i.e., earliest time the task can start), a pro-
cessing time p; > 0, and a strict deadline d; > r; (i.e.,
latest time the task have to end). The disjunctive schedul-
ing problem is the problem of determining start times so that
all jobs execute within their time windows without overlap-
ping!. This problem is NP-complete [Garey, 1979]. Dis-
junctive scheduling problems have already been widely stud-
ied in the Constraint Programming (CP) community [Blais
et al., 2020; Green et al., 2024; Grimes and Hebrard, 2015;

"Notations are borrowed from [Graham ez al., 1979].

Hebrard, 2025; Laborie et al., 2018; Siala et al., 2015;
Simonin et al., 2015]. In CP, this problem is traditionally
modeled using start-time variables s; € [r;, d; — p;] and end-
time variables e; = s; + p;, or by using interval variables
[Laborie and Rogerie, 2008]. The non-overlapping require-
ment is enforced by a set of constraints that together define
the semantics of the global No-Overlap (also known as Dis-

junctive) constraint:
Vi,jeJ, st.i#j, e <55 Ve <s;

Propagators prune inconsistent values by updating the ear-
liest start s; (i.e., lower bound of s;) and latest completion
times €; (i.e., upper bound of e;), tightening the time win-
dows. Achieving bound consistency is at least as hard as
solving the problem itself, which is NP-complete. Therefore,
many polynomial-time algorithms (most of them running in
O(n?) or O(nlog(n))) update the bounds using relaxed rea-
soning. The most common approaches are based on edge-
finding, not-first/not-last, or detectable precedence reasoning
(a non-exhaustive list of such algorithms includes [Baptiste
et al., 2001; Carlier and Pinson, 1994; Fahimi et al., 2018;
Fahimi and Quimper, 2014; Vilim et al., 2005]).

Example 1. A small No-Overlap instance is given in Fig. 1.
Job t4 cannot start at time 7, as ty and t3 cannot both be
scheduled before ti, nor can they be after ty. Ordering
(ta,t1,t3,t4) allows for the earliest feasible start time of 8
for ty. None of the common filtering techniques can detect
that t4 cannot start at time 7. In contrast, a bound-consistent
filtering algorithm would detect it.

To the best of our knowledge, a guaranteed bound-
consistent (BC) filtering has not yet been developed. Despite
a worst-case exponential time complexity, it could be valu-
able. First, it would allow researchers to check filtering prop-
erties, such as in [Gillard et al., 2019] and measure the fil-
tering gap of the existing polynomial-time algorithm to guide
future research on filtering algorithms for the No-Overlap. It
would also allow testing whether, for a given problem, in-
creasing its filtering to BC significantly reduces the number
of nodes (e.g., using the replay of [Van Cauwelaert et al.,
2015]).

Ciré et al. [Cire and Van Hoeve, 2012] introduced a Multi-
valued Decision Diagram (MDD) based on job sequencing,
denoted NO-MDD hereafter. Each edge is labeled with a job.
Consequently, a node at layer k corresponds to a state where
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Figure 1: Job domains and timeline visualization with tightened start time for ¢4.

a prefix of k jobs has been sequenced. Since the width of
the NO-MDD can grow rapidly (proportional to the number
of permutations), they propose to bound it to W via node-
merging (i.e., creating a relaxed NO-MDD). They also infer
job precedence relations from it to filter start times. Given
a built NO-MDD, detecting all precedences takes O(n3W)
time, or O(n?|V|) (with V the set of nodes).

The purpose of this paper, building on the NO-MDD [Cire
and Van Hoeve, 2012], is threefold. It offers stronger propa-
gation when working with exact MDDs. It proposes a prac-
tical polynomial filtering based on relaxed MDDs. And it
delivers an empirical evaluation. Specifically, it first de-
scribes a BC filtering that inspects all edges of the exact NO-
MDD in O(|€|) time (with &, the set of edges) for a filtering
stronger than [Cire and Van Hoeve, 2012]. It then presents
a polynomial-time propagator using a relaxed NO-MDD run-
ning in O(n?W), whose implementation takes advantage of
the dynamic refinements found in Haddock [Gentzel et al.,
2020]. Finally, it presents an empirical evaluation where the
new propagator is a redundant constraint. The evaluation as-
sesses the filtering strength relative to the state of the art and
the precedence-based method [Cire and Van Hoeve, 2012].

2 Bound-Consistent No-Overlap Filtering

We now recall the No-Overlap MDD from [Cire and Van Ho-
eve, 2012] and proceed to the first contribution: achieving BC
when filtering start times with an exact MDD.

2.1 The No-Overlap Exact MDD

An MDD can be specified by a set of states S, a set of possible
labels U, a label generating function A : S — U (i.e., possible
edges from a state), and a state transition function 7 : S X
U — S computing the new state for a state and a label. For
the NO-MDD, these are:

* A state is a tuple (A%, E¥), where At C J is the set of
jobs already placed, and E¥ is the earliest time at which
the next job can be placed. The initial state (root) is
(0, 0), i.e., no activities sequenced yet. The target state
(sink) is defined as (J, H), i.e., the unique state where all
the jobs have been sequenced, and H is an upper-bound
on the latest completion time (horizon).

» Labels consist of the jobs to be scheduled (i.e., 4 = J).

s AM(AYL EYY) = J\ (AY U {i € J | max(EY,s;) +
p; > €;}). This function filters out the jobs that have
already been sequenced earlier and the ones that cannot
be scheduled while satisfying their deadlines.

» The state transition fuction 7 is defined as: If A*Ui = J,
T((AY, E¥),4) = (J, H), otherwise, T({A%, EV),i) =
(A% Ui, max(E*, s;) + p;). This function ensures that
job ¢ is never scheduled earlier than the earliest feasible
time of the originating state, E*, nor than its own.

The NO-MDD is compiled top-down layer-wise, ensuring
that each state is unique in each layer. One can note that
applying A to the sink node yields an empty set, ensuring, by
construction, an MDD of at most |.J| layers of edges, lead-
ing to sequences of at most |J| jobs. Since solutions are, by
design, permutations of the J jobs, one knows that nodes on
a path that does not reach the sink are not part of solutions.
This is why a bottom-up pass is then applied to remove every
node that does not belong to at least one path to the target.
Let £ denote the set of edges of the NO-MDD. Every di-
rected e = (u,v) € £ is labeled by job ¢.. We further define
e.orig = u and e.dest = v.

Example 2. The construction process of the exact NO-MDD
is shown in Fig. 2. Figure 2a represents the top-down com-
putations of each layer of the exact NO-MDD. Nodes dis-
play state (AY, EY). In red, one can see the childless nodes
that will be removed at the bottom-up pass, and in orange,
the ones removed consequently. The final exact NO-MDD is
given at Fig. 2b.

2.2 Bound-Consistent Filtering using the NO-MDD

The earliest start time of job ¢ € J is computed as the mini-
mum of earliest start states among all edges labeled with ¢ in
the NO-MDD. More formally:

$; ¢ max <Si7 {eeg‘l}ﬁgzi} (Ei'.orig)) (1)

This is valid because every path from the root to the tar-
get node of the NO-MDD encodes a feasible sequencing of
all jobs in J and guarantees that, by scheduling them se-
quentially in that order at their earliest start times, the dead-
line constraints are also satisfied. Therefore, the formula im-
plicitly takes the earliest start time of job ¢ among all valid
sequences. Therefore, these filtering rules ensure bound-
consistency of the No-Overlap constraint.

Note that the filtering can be performed for all jobs in
O(|€]) time, since one can create an array initialized as

!

s’ = [+oo | i € J] and update the corresponding entry
§’¢e — min(§’¢ ,Ej.om-g) in constant time for each edge

e € £. A similar eﬁltering can be applied to tighten the latest
end times. Given interval domains for the start- and end-times
variables, the fix-point is obtained in one pass.
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Figure 2: Construction process of an exact NO-MDD

Example 3. Considering the exact NO-MDD in Fig. 2b and
job t4, two edges have this job as a label. Therefore, the
earliest start for this job is s, <— min(8,9).

3 Relaxed Bound-Consistent No-Overlap

The complexity for the BC filtering of the No-Overlap con-
straint is thus linear in the number of edges of the NO-MDD.
However, this number can grow exponentially. To palliate
that, [Cire and Van Hoeve, 2012] suggested working on a re-
laxed NO-MDD, by bounding the width of each layer to W,
encoding a super-set of all the valid sequences in the exact
No-MbDD. This is achieved by merging certain states within
layers. This section describes how to build a relaxed NO-
MDD [Cire and Van Hoeve, 2012]. This section also explains
how to refine the NO-MDD, following the Haddock frame-
work [Gentzel et al., 2020].

3.1 The Relaxed No-Overlap MDD

Given an MDD representing a set of solutions S, its relax-
ation represents a super set of S. A relaxed MDD can be
obtained by merging nodes with different states on a given
layer of an MDD. This reduces its size while adding new in-
valid paths. To construct a top-down relaxed MDD, one needs
to extend the definition of a state to enable node merging, as
done in [Cire and Van Hoeve, 2012]. The specification of a
relaxed NO-MDD including the node-merging operator & is
given next.

* A state is a tuple (A%, S} E¥ K), where AY C J rep-
resents the set of jobs in every path leading to this node,
S} C AV is the set of jobs in at least one path lead-
ing to this node, and E* is a lower-bound on the earliest
start for the next job to be scheduled after all the already
placed ones, and K is the number of scheduled jobs (ID
of the node layer). The initial state is (i, 0,0, 0), a state
where no activities have been sequenced yet, and 0 is as-
sumed to be a lower-bound on the earliest start of all the
jobs. The target state is defined as (.J, J, H, n), that is,
the state where all the jobs have been sequenced (H is

the horizon, i.e., the upper-bound on the latest comple-
tion time).

U=

¢ X((AL 85 EY K)) = A(AL B (s - SY)
where 1 is the indicator function to express the condi-
tional set subtraction. This function filters out jobs that

have already been sequenced earlier and those that can-
not be scheduled while satisfying their deadlines.

e The state transition function 7’ is defined as: If
K = n—1, 7({AYSY EY K),i) = (J,J H,n),
otherwise 7 ((Ai St EY K),i) = (AY U {i}, St U
{i}, max(E*, s;) + pi, K + 1). It ensures that job i is
never scheduled earlier than the earliest feasible time of
the originating state, £+, nor earlier than its own earliest
start time.

« O((AL SH EL K
Al Sil U S mln(Ei,Ei),[Q

The top-down compilation of a relaxed MDD is similar to

that of an exact one except, after expanding a layer, it needs to
reduce its size to W by merging nodes (). We merge nodes
by grouping them in buckets [Verhaeghe er al., 2021] based
on their £+ property. Buckets are obtained by partitioning
the ranges of values of £+ into W sub-intervals and merging
together nodes belonging to the same sub-interval.

K), (Ay, S By K)) = (A

u

N

Example 4. Fig. 3 shows the top-down compilation of a re-
laxed NO-MDD. Property K (trivial) is omitted for clarity
reasons. Starting at the root, four nodes are created (\' gen-
erates valid outgoing labels, ' creates new states). This layer
is reduced by bucketing (orange nodes merged). On the next
layer, seven nodes are generated, bucketed, and merged. The
process is repeated until each layer is constructed. Then, the
MDD needs to be made sound again by removing the three
dead-end nodes (circled in red) and propagating their re-
moval upward (nodes circled in orange are removed). Cir-
cled green nodes composed the final MDD. One remark: even
though the width is limited to 3 (higher than the exact MDD’s
width of 2 in Fig. 2b), the final MDD is not exact. This is
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Figure 3: Relaxed NO-MDD generation bound to a width of 3

due to the introduction of infeasible solutions during merg-
ing, leading to relaxed states that cannot remove some incor-
rect edges. Rule (1) does not tighten the earliest start of t4 to
8 yet, but, since the full width is not used, we can refine this
MDD.

3.2 Incremental update of the relaxed NO-MDD

During the search, along any branch of the search tree, the job
time windows can only shrink. This might cause some transi-
tions to become invalid according to \’. One could recompute
the NO-MDD from scratch, but it turns out to be less costly
to update it incrementally using a refinement procedure. It
first updates all properties in a top-down manner and deletes
transitions when necessary. As aresult, some nodes might be-
come orphans or dead ends. After their removal, some layer
might be left with fewer nodes than the allowed limit W. In
such cases, nodes from previous layers are expanded again
via the 7/ function, and the layer is compressed when required
using the merge operator . Such refinement procedures are
well described in [Cire and Van Hoeve, 2012] and [Gentzel et
al., 2020], which we adapt to our context here.

Example 5. The refinement process is illustrated in Fig. 4.
From top to bottom, a relaxed node is selected, one of its
incoming edges is extracted, and a new node is created to re-
ceive it. On the example, first, the edge labeled 3 is extracted
from the node (0, {2, 3}, 2), and the MDD is updated. By the
filtering rule (1), the value 7 is computed. Then, when ex-
tracting the edge labeled 2 and then the edge labeled 3 from

the node (0,{1,2,3},5), the resulting relaxed MDD is now
strong enough to tighten the earliest start time of t4 to 8.

So far, we have described only the NO-MDD used for filter-
ing the earliest start times of the jobs, and noted that another
MDD could be built in reverse order to prune the latest end
times as well. In practice, as in [Cire and Van Hoeve, 2012;
Gentzel et al., 2020], we combine these two MDD by extend-
ing the state with the corresponding bottom-up values, i.e.,
AT, ST LT, The update of the states is thus performed both
top-down and bottom-up, allowing for a stronger edge check
based on the parts of the sequence before and after the edge.

3.3 BC filtering/precedences extraction on the
relaxed NO-MDD

Applying our BC filtering or extracting the precedences on a
relaxed NO-MDD follows the same formulas as in the exact
ones. However, due to the relaxed nature of this NO-MDD,
the same level of propagation is not guaranteed to be reached.
This is why we speak about Relaxed BC filtering in that case.

To recall, precedences are extracted from an exact NO-
MDD by a combination of top-down A¥ and bottom-up AT
properties of a node (Theorem 6 in [Cire and Van Hoeve,
2012]). A job i precedes a job j (denoted i < j) if and only
if V nodes u, (j ¢ A%) Vv (i ¢ Al). Verifying it requires
checking each job pair. On relaxed NO-MDD, the S* and ST
are used to extract the precedence (Corollary 8 in [Cire and
Van Hoeve, 2012]). A job 7 precedes a job j (denoted ¢ < j)
if and only if V nodes u, (j ¢ S})V (i ¢ S]). The time
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Figure 4: Edges extractions occurring during refinement of the relaxed MDD

complexity is thus O(n?|V|) (with V the set of nodes of the
No-MDD)? or O(n3W), given W the width of the MDD.

Example 6. In the running example, using the exact MDD,
the precedences that can be extracted are 1 < 4, 2 < 4,
3 < 4. Precedence extraction also fails to tighten the time
window of t4. Therefore, even on an exact NO-MDD, the
precedence extraction filtering does not reach the BC one for
the No-Overlap.

4 Experiments

We study experimentally the problem of just-in-time schedul-
ing (1 | rj,dj,d; | > E; + > T};) [Graham et al., 1979;
Baptiste ef al., 2008]. This problem involves scheduling n
jobs on a single machine, given their release times r;, pro-
cessing times p;, deadlines d;, and a strict deadline d; (i.e.,
the latest completion time). Given £ the earliness of job
Jj (e, Ej = max(0,d; — e;)) and the tardiness T; (i.e.,
T; = max(0, e; —d;)), the goal of the problem is to minimize
the total sum of the earliness and tardiness of the jobs (i.e.,
>~ E; + Y Tj) while scheduling, in a non-overlapping man-
ner, the jobs within their time window defined by their release
time and strict deadline. We generated a given number of in-
stance of various sizes (depending on the experiment). The
processing time of each job was randomly selected from 1 to
25. To generate an instance, jobs were placed sequentially,
and each job’s time window was defined to overlap with the
two preceding and two following jobs. The desired deadline
was then randomly selected within this time window.

Our source code is available online’® and is implemented
as a constraint in MaxiCP [Schaus et al., 2024], an extended
version of MiniCP [Michel et al., 2021] solver. The experi-
ments were run on an Intel Xeon Platinum 8160 @ 2.100GHz
with 96 cores and 320 GB of RAM.

We compare four models: (i) model (baseline) using only

?Can be expressed as (n|€|) to ease comparison with the
O(|€]) for the BC filtering
3 Anonymized code in the Appendix

all the filtering algorithms from [Vilim et al., 2005]* for
the No-Overlap, (ii) model (Relaxed BC Filtering) with the
No-MDD, relaxed BC filtering and No-Overlap (redundant),
(iii) model (Precedence Extraction/PE) with the NO-MDD,
precedence extraction and No-Overlap, and (iv) model (BC
Filtering/BC) with the NO-MDD, exact BC filtering and No-
Overlap (redundant). The last model is not used in all exper-
iments (especially with bigger instances) due to its complex-
1ty.

To avoid any bias made by discrepancy in programming
language, MDD refinement strategies, solver used, we imple-
mented the precedence extraction within our solver. This al-
lows both MDD-based filtering to compare on a similar en-
vironment. Moreover, we use a replay-based search frame-
work [Van Cauwelaert et al., 2015] to ensure a fair compar-
ison between the models. First, the weakest baseline model
is used with the conflict ordering search [Gay et al., 2015])
with a time limit of one minute. During this run, the se-
quence of branching decisions is recorded, thereby defining
a reference search tree (possibly partial if the run times out).
This recorded search tree is then replayed for the other mod-
els, which differ only in their pruning strength. As a result,
all models are forced to explore exactly the same parts of
the search tree, and any differences in performance can be
attributed solely to the additional filtering they provide by
pruning this forced search tree exploration. In particular, this
avoids confounding effects due to heuristic interactions>.
4.1 Search Space Reduction and Runtime

Comparison

In this experiment, comparing the baseline, the model with
relaxed BC filtering, and the model with precedence extrac-
tion, twenty instances of the problem were generated for each
n € {18,25,30,40}. Fig. 5a displays a performance profile

“That is overload-check, detectable precedences, not-first not-
last, and edge finding.

51t is well known that stronger propagation combined with first-
fail-based heuristics may paradoxically lead to the exploration of
larger search trees.
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Figure 5: Results for instances of size n = 40 and relaxed MDDs
bounded to W = 16

[Dolan and Moré, 2002] (i.e., a cumulative over the instances
of the ratio between the method’s performance and the best
performance overall) of the times of each method. The graph
shows that our method outperforms the precedence extraction
but is dominated by the baseline. Appendix contains the re-
sults for smaller instances. We also empirically confirmed the
quadratic time complexity nature of Relaxed BC Filtering, in
contrast to the cubic one of precedence extraction, by compar-
ing the time taken at each node of the search tree. Complete
results are in the Appendix.

MDD-based methods systematically reduce the number of
nodes explored (Fig.5b). In addition, the relaxed BC filtering
is even more reducing the search tree than extracting prece-
dence, showing that even in a relaxed context, the effect of
the stronger propagation is shown (Fig.5b).

We also varied the MDD size to assess the impact. The
results in the Appendix are consistent with those of previous
experiments in [Cire and Van Hoeve, 2012; Gentzel et al.,
2020]. The wider the MDD, the greater the reduction in the
search tree, but there is an increasing exponential overhead of
the operations related to construction and refinement of the
MDD. A size for the MDD of 16 has also been shown (as
in [Cire and Van Hoeve, 2012; Gentzel et al., 2020]) to be a
good compromise between relaxation quality and time spent.
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Figure 6: Cactus plot showing, for each method and MDD width,
the proportion of replayed searches completed with a given gap g
relative to the exact bound-consistent method. Smaller search tree
expansion indicate behavior closer to bound-consistency.

Method n W || min(s) max(s) mean (s)
BC (exact NO-MDD) 12 - 4.6 449.0 82.7
Baseline 12 - 0.7 18.0 5.7
Relaxed BC 12 8 0.3 20.4 4.3
Relaxed BC 12 16 0.2 18.6 4.1
Relaxed BC 12 32 0.3 20.4 4.3
PE 12 8 0.2 21.1 4.4
PE 12 16 0.3 21.1 4.2
PE 12 32 0.3 21.2 4.4
BC (exact NOo-MDD) 14 - 121.8 7141.5 2066.9
Baseline 14 - 49 60.0 24.1
Relaxed BC 14 8 2.6 82.1 27.7
Relaxed BC 14 16 2.5 98.3 29.2
Relaxed BC 14 32 2.2 70.6 26.0
PE 14 8 2.1 91.6 30.4
PE 14 16 2.1 117.0 32.1
PE 14 32 2.2 89.2 29.9
BC (exact NO-MDD) 16 - 1183.8 20630.4  8991.9
Baseline 16 - 2.7 60.0 274
Relaxed BC 16 8 3.2 60.0 28.1
Relaxed BC 16 16 3.7 64.1 28.5
Relaxed BC 16 32 3.7 61.8 27.7
PE 16 8 33 65.4 31.3
PE 16 16 4.0 75.6 32.6
PE 16 32 4.0 71.0 32.2

Table 1: Comparison of search time in seconds for different meth-
ods, problem size, and NO-MDD width.

4.2 Comparison to Bound-Consistency

Having a Bound-Consistent algorithm at our disposal, even if
inefficient in practice for larger instances, allows to empiri-
cally compare, on smaller instances, the pruning capacity of
weaker algorithms relative to Bound-Consistency (i.e., how
many nodes are unnecessarily explored compared to BC). For
this experiment, 20 instances of sizes 12, 14, and 16 were
generated. The replay method first records the search tree of



the baseline model using a 1-minute timeout. The number of
nodes explored, and the search time for the four models, as
well as the width for the exact NO-MDD were monitored.

Figure 6 presents a cactus plot for each non-BC method
of the search tree expansion between the method and the BC
filtering. The search tree expansion g is computed using the
following formula:
zZ -7

Z/
where Z is the number of nodes explored during the search
by the method under consideration, and Z’ is the number
of nodes explored when using the bound-consistent propa-
gator. The tree expansion denotes the additional percentage
of nodes required by the method compared to the BC search
tree. As all the compared methods have a weaker consistency
than BC, the tree expansions measured here are all positives.
Closer to a zero tree expansion means closer to a bound con-
sistent pruning.

The results, comparing the four models (baseline, relaxed
BC filtering, precedence extraction, and BC filtering), show
first that the classical relaxation used in the baseline is rela-
tively far from BC, requiring at least 10% more nodes on 30%
of the tested instances and with only 20% of the instances
close (<1% tree expansion) to BC. The precedence extrac-
tion behaves a bit better, requiring at least 10% more nodes
for 10 to 20% of the instance (depending on the W). The re-
laxed BC model shows empirically the best results, requiring
at least 10% more node for 0 to 7% of the instance. With a
width of 32, it even shows a maximum of 5% tree expansion
for the whole benchmark. For both models with NO-MDD, a
larger width led to smaller tree expansion, demonstrating the
expected improved quality of a less relaxed MDD.

Although the instances considered are small, it was ob-
served that the exact NO-MDD already reaches an average
width of 20 000 nodes during its construction. This sig-
nificantly limits scalability, as larger or real-world instances
would quickly exceed practical memory constraints, result-
ing in prohibitive search times. Relax MDDs allows avoiding
such an explosion of required memory by bounding the width.

Table 1 reports the minimum, maximum, and average re-
play times for each method. For the baseline, precedence ex-
traction and relaxed BC, the values follows similar trends as
for bigger instances (see Fig.5). For the model with the BC
filtering, the results shows the drastic increase (several order
of magnitude higher) of time resulting from the exponential
behavior of the exact algorithm. This demonstrates that, for
a fraction of the search time and a fraction of the NO-MDD
width required, our method is able to reach performance close
to bound-consistency.

To summarize the findings of this experiment, our re-
laxed BC algorithm exhibits the lowest search tree expansion
among the relaxed algorithms (gap less than 5% for W = 32
on each instance), while maintaining control over memory
usage.

g:

5 Conclusion

This paper proposes the first BC algorithm to tighten the time
window of the jobs in the No-Overlap constraint based on the

No-Overlap MDD introduced in [Cire and Van Hoeve, 2012].
A relaxed polynomial-time version of it is obtained by re-
laxing the MDD, i.e., bounding its width. Experiments on a
single-machine just-in-time scheduling problem showed that
the new filtering method provides additional pruning com-
pared to the standard filtering for the no-overlap constraint.
The experiments also show that, compared to the classical
filtering only, using the Relaxed BC filtering redundantly
achieves filtering closer to bound-consistency.
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